Calculating Eigenvalues of 2×2 Matrices

Recall: Let A be a $n \times n$ matrix. We call a vector \boldsymbol{x} an *eigenvector* of A with corresponding *eigenvalue* λ (a scalar) if

 $A x = \lambda x, \qquad x \neq 0$

Theorem 1: Let A be a $n \times n$ matrix. Then the scalar λ is an eigenvalue of A if and only if there exists a vector \boldsymbol{x} such that

 $(A - \lambda I)\boldsymbol{x} = \boldsymbol{0}, \qquad \boldsymbol{x} \neq \boldsymbol{0}$

(2)

(1)

Proof:

 $(A - \lambda I) \overrightarrow{x} = \overrightarrow{o}, \overrightarrow{x} \neq \overrightarrow{o} \in \overrightarrow{P}$ $A \overrightarrow{x} - \lambda I \overrightarrow{x} = \overrightarrow{o}, \overrightarrow{x} \neq \circ \in \overrightarrow{P}$ $A \overrightarrow{x} = \lambda \overrightarrow{x} = \overrightarrow{o}, \overrightarrow{x} \neq \circ \in \overrightarrow{P}$ $A \overrightarrow{x} = \lambda \overrightarrow{x} = \overrightarrow{o}, \overrightarrow{x} \neq \circ \in \overrightarrow{P}$ λ is an eigenvalue of A.

Corollary 1: Let A be a $n \times n$ matrix. The scalar λ is an eigenvalue of A if and only if $\operatorname{nullity}(A - \lambda I) > 0$ (3) or equivalently The matrix $A - \lambda I$ is not invertible. \checkmark (4)

det([""]) = ad - bc

Recall: Let $A = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$. Then A is invertible if and only if $\det(A) \neq 0$.

Corollary 2: Let A be a 2 × 2 matrix. Then a scalar λ is an eigenvalue of A if and only $\frac{\det(A - \lambda I) = 0}{(5)}$

I=[10]

 $\lambda I = \begin{bmatrix} \lambda & 0 \\ 0 & \lambda \end{bmatrix}$

Example: Find the eigenvalues of the matrix $A = \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix}$. $O = \det(A - \lambda I) = \det(\begin{bmatrix} l - \lambda & l \\ l & l - \lambda \end{bmatrix})$ $= (1 - \lambda)^{2} - l$ $= \lambda^{2} - 2\lambda + l = l \Rightarrow \lambda^{2} - 2\lambda = \lambda(\lambda - 2)$ The eigenvalues of A are $\lambda_{1} = 0$ and $\lambda_{2} = 2$.

Example: Find the eigenvalues of the matrix $A = \begin{bmatrix} 1 & 1 \\ -1 & 3 \end{bmatrix}$. $O = \det (A - \lambda T) = \det (\begin{bmatrix} 1 - 2 & 1 \\ -1 & 3 \end{bmatrix}) = (1 - \lambda)(3 - \lambda) + 1 = \lambda^2 - 4\lambda + 4$ $= (\lambda - 2)^2$

The eigenvalue of A is z=2.